
Project TACTIC: Teaching All Computational
Thinking through Inclusion and Collaboration

TACTICal Teaching Brief

Helpful Strategies for Utilizing the Universal Design For
Learning Framework in Computer Science Education

Introduction

Scenario

The Universal Design for Learning (UDL) framework provides guidelines that can help teachers
proactively plan for the academic diversity present in classrooms. This is especially important
when it comes to CS education due to the historic underrepresentation of women, people from
different cultural backgrounds, and people with disabilities in CS fields. If we can think about ways
of meaningfully engaging ALL learners through the UDL framework, then we can address the
barriers that are inherent in my CS activities.

UDL is a proactive approach to planning of curricular opportunities. A UDL approach takes into
account learner variability when considering goals, methods of instruction, assessments and
materials. It is organized around the principles of providing students with multiple means of
representation, expression and engagement with their learning.

Mr. Gibson is going to be teaching CS within his mathematics instruction this year. At the
beginning of the school year, he attended a school-wide professional development (PD) workshop
on Universal Design for Learning. In this workshop, Mr. Gibson learned about how the three
UDL principles could be used in planning instruction that is engaging and accessible to all his
students, including those with disabilities. He wonders how he might apply these principles to
the CS activities that will take place this year with all of his students, including three students with
disabilities who are included in his 3rd grade class.

1.	Rachel has a learning disability related to math;

2.	Roberto has a social communication disorder that kept him from verbally expressing his
needs; and

3.	Connie has an emotional behavior disorder as well as a speech/language impairment and
often does not interact with her peers.

Mr. Gibson also realizes that beyond the needs of these three students, his class has a lot of
academic, social, and cultural diversity. Meeting each of the students’ individual needs will be a
challenge this year! In thinking about the PD he attended this summer and the students in this
class, he wonders how UDL can help him plan his integrated math and CS lessons in a way that
will engage all his students, including Rachel, Roberto, and Connie. Because Ms. Gomez, the
special education teacher, helped lead this PD, Mr. Gibson decided to meet with her to brainstorm
some ideas about how UDL might be leveraged to provide greater opportunities for success for all
learners, including those with disabilities.

Common Challenges

	» Teachers believe that UDL is important, but do not know
where to start or how to find time to plan in this manner. It
looks really time consuming.

	» Although UDL is intended to address whole-class instruction,
it is unclear how individual student needs fit within this
framework.

	» UDL seems to make sense conceptually, but it’s hard to see
how it would apply in CS activities.

Do any of these challenges sound familiar?
Can you relate to any of these?

Figure 1: The Three Principles of UDL
Adapted from: National Center on Universal Design for Learning: The Three Principles of UDL

Universal Design for Learning within Computer Science Education

Figure 2: Universal Design for Learning within Computer Science Education

Multiple Means of
Representation

Multiple Means of
Action and Expression

Multiple Means of
Engagement

Provide options for perception

•	 Model computing using
physical representations
as well as through an
interactive whiteboard,
videos

•	 Give access to modeled
code while students work
independently

•	 Provide access to video
tutorials of computing
tasks

•	 Select coding apps and
websites that allow the
students to adjust visual
settings (such as font size
& contrast) and that are
compatible with screen
readers

Provide options for physical
action

•	 Provide teacher’s codes as
templates

•	 Include CS Unplugged
activities that show
physical relationship
of abstract computing
concepts

•	 Use assistive technology
including larger/smaller
mice, touch-screen devices

•	 Select coding apps and
websites that allow coding
with keyboard shortcuts
in addition to dragging &
dropping with a mouse

Provide options for recruiting
interest

•	 Give students choices
(choose project, software,
topic)

•	 Allow students to make
projects relevant to
culture and age

•	 Minimize possible
common “pitfalls” for both
computing and content

•	 Allow for differences in
pacing and length of work
sessions

•	 Provide options to
increase or decrease
sensory stimulation (for
example listening to
music with headphones
or using noise cancelling
headphones)

•	 Allow for differences in
pacing and length of work
sessions

Provide options for language
mathematical expressions, and
symbols

•	 Teach and review content
specific vocabulary

•	 Teach and review
computing vocabulary
(e.g., code, animations,
computing, algorithm)

•	 Post anchor charts and
provide reference sheets
with images of blocks or
with common syntax when
using text

Provide options for expression
and communication

•	 Give options of unplugged
activities and computing
software and materials
(e.g., Pseudocode, Scratch,
code.org, Alice)

•	 Give opportunities to
practice computing skills
and content through
projects that build prior
lessons

•	 Provide sentence
starters or checklists for
communicating in order to
collaborate, give feedback,
and explain work

•	 Create physical
manipulatives of
commands, blocks or lines
of code

•	 Provide options that
include starter code

Provide options for sustaining
effort and persistence

•	 Remind students of both
computing and content
goals

•	 Provide support or
extensions for students to
keep engaged

•	 Teach and encourage peer
collaboration by sharing
products

•	 Utilize pair programming
and group work with
clearly defined roles

•	 Discuss the integral
role of perseverance
and problem solving in
computer science.

•	 Recognize students
for demonstrating
perseverance and
problem solving in the
classroom.

Provide options for
comprehension

•	 Activate background
knowledge by making
computing tasks
interesting and culturally
relevant

•	 State lesson content/
computing goals

•	 Encourage students
to ask questions
as comprehension
checkpoints

•	 Use relevant analogies
and make cross-curricular
connections explicit (for
example comparing
iterative product
development to the
writing process)

•	 Provide graphic
organizers for students to
“translate” programs into
pseudocode

Provide options for executive
functions

•	 Guide students to set
goals for long-term
projects

•	 Record students’ progress
(have planned checkpoints
during lessons for
understanding and
progress for computing
skills and content)

•	 Provide exemplars of
completed products

•	 Embed prompts to stop
and plan, test, or debug
throughout a lesson or
project.

•	 Provide graphic organizers
to facilitate planning, goal-
setting, and debugging

•	 Provide explicit instruction
on skills such as asking for
help, providing feedback,
and using problem solving
techniques

•	 Demonstrate debugging
with think-alouds

Provide options for self-
regulation

•	 Communicate clear
expectations for
computing tasks,
collaboration, and help
seeking

•	 Develop ways for students
to self-assess and reflect
on own projects and those
of others

•	 Use assessment rubrics
that evaluate both content
and process

•	 Break-up coding activities
with opportunities for
reflection such as turn and
talks or written questions

•	 Acknowledge difficulty
and frustration. Model
different strategies for
dealing with frustration
appropriately

Israel, M., Lash, T., Ray, M. (2017). Universal Design for Learning within Computer Science Education. Creative
Technology Research Lab. University of Illinois.

Strategies

	» Start small, utilizing UDL principles in one lesson or unit at a time.

	» Begin planning by thinking about what is most important in the unit/lesson and then
what would make that content difficult for your students. By focusing first on barriers to
learning, you can begin to isolate which checkpoints in the UDL framework to begin with.

	» Don’t attempt to do all the checkpoints in the entire UDL framework. Start with one or two
UDL checkpoints and build up to a realistic number. More isn’t always better!

	» Reflect on how UDL works in other content areas. For example, if multiple means of
representation in mathematics means that you provide students with options for
manipulatives and the use of video to reinforce learning, these same strategies can be
used in CS education by using Unplugged activities and worked video examples.

	» Consider Goals, Environment, Materials, and Assessment (see example lesson plan)

	» Use the table (Figure 2) and lesson plan template we provided for examples to launch this
work. (Note: It’s not an exhaustive table.)

Summary

Mr. Gibson is excited about utilizing a UDL approach when planning for his computer science
lessons for his students. With Ms. Gomez’s help, him saw that starting small can make integrating
a UDL approach feasible and that planning for learner differences ahead of time can provides
benefits for all of the students in his class including those with disabilities.

Funding for this research was provided by the National Science
Foundation (award #1639837). Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors
and do not necessarily reflect those of the NSF.

For More Information, please contact:
Maya Israel at misrael@coe.ufl.edu

Contributing authors to this TACTICal Brief:
Todd Lash, Gakyung Jeong, Quinn Wherfel, and Maya Israel

